2016 IEEE International Test Conference

I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems

M. Murakami, H. Kobayashi, S. N. B. Mohyar O. Kobayashi, T. Miki, J. Kojima

Gunma University

Universiti Malaysia Perlis

D-Clue Tech, formerly STARC

Research Objective

- To develop usage of complex multi-band signals for LSI testing applications
- To develop digital centric design of complex multi-band signal generator
 - Multi-bit $\Delta\Sigma$ DA modulator
 - Linearity enhancement algorithms

Outline

- Background to This Research
- Complex Multi-Band Signals
- Complex Multi-BP ΔΣ DA Modulators
- DWA Algorithm
- Self-Calibration
- Combination of DWA and Self-Calibration
- Conclusions

Outline

- Background to This Research
- Complex Multi-Band Signals
- Complex Multi-BP ΔΣ DA Modulators
- DWA Algorithm
- Self-Calibration
- Combination of DWA and Self-Calibration
- Conclusions

Research Goal

Demand for low cost testing of communication IC

High quality I,Q test signal generation for receiver IC with low cost

Outline

- Background to This Research
- Complex Multi-Band Signals
- Complex Multi-BP ΔΣ DA Modulators
- DWA Algorithm
- Self-Calibration
- Combination of DWA and Self-Calibration
- Conclusions

Complex Signal

Complex signal processing is NOT complex. - Prof. Ken Martin, Toronto Univ.

IC Testing with Multi-tone Signal

ADSL ADC Testing

IC Testing with Complex Multi-tone Signal

Complex Analog Filter Testing

IC Testing with Complex Multi-tone Signal

I-Q ADCs Testing

I-Q ADCs in receiver circuit

IC Testing with Complex Multi-tone Signal Image Rejection Ratio Testing of Communication ICs

I, Q imbalance Negative freq. (input) Suggested by an ATE vendor 12/50

IC Testing with Complex Signal

Clock phase fine adjustment system using complex signal

 $sin(2\pi f_0(t - \Delta t))_{\ell'}$ = cos(2\pi f_0\Delta t) sin(2\pi f_0 t) - sin(2\pi f_0\Delta t) cos(2\pi f_0 t)_{\ell'} = G_c sin(2\pi f_0 t) + G_S cos(2\pi f_0 t)_{\ell'}

Suggested by an ATE vendor

IC Testing with Complex Signal High frequency signal generation

 $\begin{aligned} ③ \\ Y &= \cos \omega_{in} t \cdot \cos \omega_c t - \sin \omega_{in} t \cdot \sin \omega_c t + \\ &= \cos(\omega_{in} + \omega_c) t. \end{aligned}$

Outline

- Background to This Research
- Complex Multi-Band Signals
- Complex Multi-BP ΔΣ DA Modulators
- DWA Algorithm
- Self-Calibration
- Combination of DWA and Self-Calibration
- Conclusions

I,Q Signal Generation

1 Analog centric

2 Digital centric(1)

③ Digital centric(2)

Proposed

1 Analog Centric

Large Nyquist-rate DACs and Steep analog filters

Delta Sigma DA Converter Real vs Complex

② 2 Real-BP ΔΣ DACs

Complex Delta Sigma is Superior

OSR : Oversampling Ratio

19/50

15 dB better SNDR for complex BP ΔΣ modulator High quality I, Q signals

I,Q Signal Generation

Principle of Complex BP Noise Shape

Principle of Complex BP Noise Shape

Principle of Complex BP Noise Shape

2nd-order Complex Multi-BP ΔΣ DAC

Nth-order Complex Resonator

Outline

- Background to This Research
- Complex Multi-Band Signals
- Complex Multi-BP ΔΣ DA Modulators
- DWA Algorithm

DWA: Data Weighted Averaging

One of Dynamic Element Matching (DEM) algorithms

Multi-bit DA Modulator

Multi-bit DAC

Normal unary DAC

 e_i : current source mismatch

Multi-bit DAC

Multi-bit DAC + DWA

Effect of DWA

Equivalent Circuit of Complex DWA

Complex resonator Complex notch

Equivalent Circuit Implementation

- Attach pointers
- Exchange upper-path and lower-path every N clock

Complex DWA is realized.

Complex Multi-Bandpass DWA Algorithm

Simulation Result ~Ideal Linear DAC~

Simulation Result ~Actual Nonlinear DAC~

36/50

Notches filled with noise

Simulation Result ~ Actual Nonlinear DAC + DWA ~

Outline

- Background to This Research
- Complex Multi-Band Signals
- Complex Multi-BP ΔΣ DA Modulators
- DWA Algorithm
- Self-Calibration
- Combination of DWA and Self-Calibration
- Conclusions

Look Up Table

Example

Cat Age	Human Age
1	20
2	27
3	33
4	39
5	45
6	50
7	55
8	60

DAC Nonlinearity Measurement

Results are stored in LUTs

ΔΣ DAC with Self-Calibration of DAC1, DAC2

CLK(1)

LUT

Address		Q
0	0.00	0.00
1	1.05	0.97
2	2.03	2.04
3	2.99	3.01
4	4.02	4.05

ΔΣ DAC with Self-Calibration of DAC1, DAC2

CLK(2)

Simulation Results

Simulation Results

When DAC nonlinearity is large,

self-calibration (3) is more effective than DWA(2).

Pros and Cons of Self-Calibration

Pros

	DWA	Self-Calibration
DAC Nonlinearity Noise Shaping	Specific Bands	All Bands

Better SNDR than DWA is obtained.

Cons

DAC nonlinearity measurement with delta-sigma ADC is required.

Outline

- Background to This Research
- Complex Multi-Band Signals
- Complex Multi-BP ΔΣ DA Modulators
- DWA Algorithm
- Self-Calibration
- Combination of DWA and Self-Calibration
- Conclusions

Combination of DWA and Self-Calibration

LP case

Combination of DWA and Self-Calibration

LP case

Outline

- Background to This Research
- Complex Multi-Band Signals
- Complex Multi-BP ΔΣ DA Modulators
- DWA Algorithm
- Self-Calibration
- Combination of DWA and Self-Calibration
- Conclusions

Conclusion

- I-Q signal generation with digital centric
- Complex multi-BP $\Delta\Sigma$ DAC
- Multi-bit DAC
 - O Relaxes analog filter requirements
 - **x** Degrades system linearity

DWA algorithm
Self-calibration algorithm
Their combination
Low cost, high quality I-Q signal generation.

Back Up

Type of DWA

Simulation Result ~ Actual Nonlinear DAC + DWA ~

N (number of notches)

Simulation Conditions : DAC unit cell variation Standard deviation 1.0%

$\mathsf{DWA} = \mathsf{\Delta}\mathsf{\Sigma}$

